930 research outputs found

    A network centrality method for the rating problem

    Get PDF
    We propose a new method for aggregating the information of multiple reviewers rating multiple products. Our approach is based on the network relations induced between products by the rating activity of the reviewers. We show that our method is algorithmically implementable even for large numbers of both products and consumers, as is the case for many online sites. Moreover, comparing it with the simple average, which is mostly used in practice, and with other methods previously proposed in the literature, it performs very well under various dimension, proving itself to be an optimal trade--off between computational efficiency, accordance with the reviewers original orderings, and robustness with respect to the inclusion of systematically biased reports.Comment: 25 pages, 8 figure

    Identification of Structural Parameters Based on HHT and NExT

    Get PDF
    Signal processing approaches are widely used in the field of earthquake engineering, especially in the identification of structural modal parameters. Hilbert-Huang Transformation (HHT) is one new signal processing approach, which can be used to identify the modal frequency, damping ratio, mode shape, even the interlayer stiffness of the shear-type structure, incorporating with Natural Excitation Technique (NExT) method to take information from the response records of the structure. The stiffness of the structure is of great importance to judge the loss of its bearing capacity after earthquake. However, all of modal parameters are required to calculate the stiffness of the structure by use of HHT and NExT, which means that the response records shall contain all of modal information. However, it has been found that the responses of the structure recorded only contain the former order modal information; even it is excited by earthquake. Therefore, it is necessary to found a formula (formulas) to calculate the stiffness only using limited modal parameters. In this paper, the calculation formulas of the interlayer stiffness of shear-type structure are derived by using of the flexibility method, which indicate that all of interlayer stiffnesses could be worked out as long as any one set of modal parameters is obtained. After that, Taking Sheraton-Universal Hotel subjected to North Bridge earthquake in 1994 as an example, HHT and NExT are used to identify its modal parameters, the derived formulas are used to calculate the interlayer stiffnesses, and their applicability and accuracy are verified

    The density connectivity information bottleneck

    Full text link
    Clustering with the agglomerative Information Bottleneck (aIB) algorithm suffers from the sub-optimality problem, which cannot guarantee to preserve as much relative information as possible. To handle this problem, we introduce a density connectivity chain, by which we consider not only the information between two data elements, but also the information among the neighbors of a data element. Based on this idea, we propose DCIB, a Density Connectivity Information Bottleneck algorithm that applies the Information Bottleneck method to quantify the relative information during the clustering procedure. As a hierarchical algorithm, the DCIB algorithm produces a pruned clustering tree-structure and gets clustering results in different sizes in a single execution. The experiment results in the documentation clustering indicate that the DCIB algorithm can preserve more relative information and achieve higher precision than the aIB algorithm.<br /

    Towards Top-Down Stereoscopic Image Quality Assessment via Stereo Attention

    Full text link
    Stereoscopic image quality assessment (SIQA) plays a crucial role in evaluating and improving the visual experience of 3D content. Existing binocular properties and attention-based methods for SIQA have achieved promising performance. However, these bottom-up approaches are inadequate in exploiting the inherent characteristics of the human visual system (HVS). This paper presents a novel network for SIQA via stereo attention, employing a top-down perspective to guide the quality assessment process. Our proposed method realizes the guidance from high-level binocular signals down to low-level monocular signals, while the binocular and monocular information can be calibrated progressively throughout the processing pipeline. We design a generalized Stereo AttenTion (SAT) block to implement the top-down philosophy in stereo perception. This block utilizes the fusion-generated attention map as a high-level binocular modulator, influencing the representation of two low-level monocular features. Additionally, we introduce an Energy Coefficient (EC) to account for recent findings indicating that binocular responses in the primate primary visual cortex are less than the sum of monocular responses. The adaptive EC can tune the magnitude of binocular response flexibly, thus enhancing the formation of robust binocular features within our framework. To extract the most discriminative quality information from the summation and subtraction of the two branches of monocular features, we utilize a dual-pooling strategy that applies min-pooling and max-pooling operations to the respective branches. Experimental results highlight the superiority of our top-down method in simulating the property of visual perception and advancing the state-of-the-art in the SIQA field. The code of this work is available at https://github.com/Fanning-Zhang/SATNet.Comment: 13 pages, 4 figure

    Dynamic model and ADRC of a novel water-air unmanned vehicle for water entry with in-ground effect

    Get PDF
    The class of vehicles that can move both in the air and underwater has been of great interest for decades. A novel water-air unmanned vehicle with double quadrotor structure is designed in this study. The air power mechanism works when the vehicle flies in the air, whereas the water power mechanism works when it moves underwater. The water entry process of water-air unmanned vehicle requires accurate attitude and height control, or the vehicle may bounce off or overturn. However, a force resisting its descent known as in-ground effect will affect its stability. The in-ground effect formula of the water entry process is derived by experiments, and the water entry dynamic model is improved at the same time. An active disturbance rejection controller (ADRC) is designed for the control of water entry attitude and height. Experimental results obtained from the comparison of the ADRC and a proportional-integral-derivative (PID) controller show that the ADRC designed in this study is more robust than the PID controller for the internal coupling and external disturbance on the vehicle. Moreover, the ADRC can meet the requirements of rapid attitude adjustment and accurate height control
    • …
    corecore